Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
1.
Acute Med ; 23(1): 50-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38619171

RESUMO

This article presents the case of a 25-year-old Moroccan male who contracted Orf disease (Ecthyma contagiosum), a common zoonotic viral infection in sheep and goats. The disease, caused by a parapoxvirus, can be transmitted to humans through contact with infected animals. The patient developed painful lesions on his fingers after interacting with a sheep during the Feast of Sacrifice. Diagnosis was clinically established considering exposure history and lesion characteristics. Treatment involved local antiseptics and 2% fusidic acid cream. The lesions resolved spontaneously over a few weeks without functional impairment.


Assuntos
Dor , Zoonoses Virais , Adulto , Animais , Humanos , Masculino , Dor/etiologia , Ovinos , Zoonoses Virais/diagnóstico
3.
J Virol ; 98(4): e0194123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470143

RESUMO

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.


Assuntos
Galinhas , Patos , Cavalos , Vírus da Influenza A , Influenza Aviária , Ácidos Neuramínicos , Animais , Humanos , Galinhas/genética , Galinhas/metabolismo , Galinhas/virologia , Patos/genética , Patos/metabolismo , Patos/virologia , Epitopos/química , Epitopos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Cavalos/genética , Cavalos/metabolismo , Cavalos/virologia , Vírus da Influenza A/química , Vírus da Influenza A/classificação , Vírus da Influenza A/metabolismo , Influenza Aviária/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mutação , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Suínos/virologia , Zoonoses Virais/metabolismo , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
4.
J Virol ; 98(2): e0168223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289117

RESUMO

Porcine deltacoronavirus (PDCoV) has caused enormous economic losses to the global pig industry. However, the immune escape mechanism of PDCoV remains to be fully clarified. Transcriptomic analysis revealed a high abundance of interferon (IFN)-induced protein with tetratricopeptide repeats 3 (IFIT3) transcripts after PDCoV infection, which initially implied a correlation between IFIT3 and PDCoV. Further studies showed that PDCoV nsp5 could antagonize the host type I interferon signaling pathway by cleaving IFIT3. We demonstrated that PDCoV nsp5 cleaved porcine IFIT3 (pIFIT3) at Gln-406. Similar cleavage of endogenous IFIT3 has also been observed in PDCoV-infected cells. The pIFIT3-Q406A mutant was resistant to nsp5-mediated cleavage and exhibited a greater ability to inhibit PDCoV infection than wild-type pIFIT3. Furthermore, we found that cleavage of IFIT3 is a common characteristic of nsp5 proteins of human coronaviruses, albeit not alphacoronavirus. This finding suggests that the cleavage of IFIT3 is an important mechanism by which PDCoV nsp5 antagonizes IFN signaling. Our study provides new insights into the mechanisms by which PDCoV antagonizes the host innate immune response.IMPORTANCEPorcine deltacoronavirus (PDCoV) is a potential emerging zoonotic pathogen, and studies on the prevalence and pathogenesis of PDCoV are ongoing. The main protease (nsp5) of PDCoV provides an excellent target for antivirals due to its essential and conserved function in the viral replication cycle. Previous studies have revealed that nsp5 of PDCoV antagonizes type I interferon (IFN) production by targeting the interferon-stimulated genes. Here, we provide the first demonstration that nsp5 of PDCoV antagonizes IFN signaling by cleaving IFIT3, which affects the IFN response after PDCoV infection. Our findings reveal that PDCoV nsp5 is an important interferon antagonist and enhance the understanding of immune evasion by deltacoronaviruses.


Assuntos
Proteases 3C de Coronavírus , Infecções por Coronavirus , Deltacoronavirus , Interferon Tipo I , Peptídeos e Proteínas de Sinalização Intracelular , Doenças dos Suínos , Suínos , Animais , Humanos , Proteases 3C de Coronavírus/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Deltacoronavirus/enzimologia , Deltacoronavirus/metabolismo , Deltacoronavirus/patogenicidade , Imunidade Inata , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteólise , Transdução de Sinais/imunologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Fatores de Transcrição/metabolismo , Zoonoses Virais/imunologia , Zoonoses Virais/virologia , Replicação Viral
7.
J Dtsch Dermatol Ges ; 22(1): 56-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085140

RESUMO

The family Poxviridae currently comprises 22 genera that infect vertebrates. Of these, members of the Ortho-, Para-, Mollusci- and Yatapoxvirus genera have been associated with human diseases of high clinical relevance in dermatology. Historically, smallpox had been a notorious health threat until it was declared eradicated by the World Health Organization in 1979. Today, dermatologists are confronted with a variety of poxviral infections, such as farmyard pox, which occurs as a zoonotic infection after contact with animals. In the tropics, tanapox or vaccinia may be in the differential diagnosis as neglected tropical dermatoses. Molluscum contagiosum virus infection accounts for significant disease burden worldwide and is classified as a sexually transmitted infection in certain scenarios. Recently, mpox (monkeypox) has emerged as a public health emergency of international concern, requiring rapid recognition and appropriate management by dermatologists and infectious disease specialists. Advances and new insights into the epidemiology, diagnosis, clinical manifestations and complications, treatment, and prevention of poxviral infections require a high level of expertise and interdisciplinary skills from healthcare professionals linking virology, infectious diseases, and dermatology. This CME article provides a systematic overview and update to assist the practicing dermatologist in the identification, differential diagnosis, and management of poxviral infections.


Assuntos
Dermatologia , Molusco Contagioso , Infecções por Poxviridae , Animais , Humanos , Molusco Contagioso/diagnóstico , Infecções por Poxviridae/diagnóstico , Infecções por Poxviridae/tratamento farmacológico , Zoonoses Virais
8.
J Virol Methods ; 323: 114837, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914040

RESUMO

Zoonotic viral infections continue to pose significant threats to global public health, as highlighted by the COVID-19 pandemic caused by the SARS-CoV-2 virus. The emergence of SARS-CoV-2 served as a stark reminder of the potential for zoonotic transmission of viruses from animals to humans. Understanding the origins and dynamics of zoonotic viruses is critical for early detection, prevention, and effective management of future outbreaks. Metagenomics has emerged as a powerful tool for investigating the virome of diverse ecosystems, shedding light on the diversity of viral populations, their hosts, and potential zoonotic spillover events. We provide an in-depth examination of metagenomic approaches, including, NGS metagenomics, shotgun metagenomics, viral metagenomics, and single-virus metagenomics, highlighting their strengths and limitations in identifying and characterizing zoonotic viral pathogens. This review underscores the pivotal role of metagenomics in enhancing our ability to detect, monitor, and mitigate zoonotic viral infections, using SARS-CoV-2 analogues as a case study. We emphasize the need for continued interdisciplinary collaboration among virologists, ecologists, and bioinformaticians to harness the full potential of metagenomic approaches in safeguarding public health against emerging zoonotic threats.


Assuntos
COVID-19 , Vírus , Animais , Humanos , SARS-CoV-2/genética , Zoonoses Virais , Ecossistema , Pandemias/prevenção & controle , Vírus/genética , Metagenômica
9.
Science ; 382(6675): 1098-1099, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060649
10.
Science ; 382(6670): 595-600, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917680

RESUMO

Historically, mpox has been characterized as an endemic zoonotic disease that transmits through contact with the reservoir rodent host in West and Central Africa. However, in May 2022, human cases of mpox were detected spreading internationally beyond countries with known endemic reservoirs. When the first cases from 2022 were sequenced, they shared 42 nucleotide differences from the closest mpox virus (MPXV) previously sampled. Nearly all these mutations are characteristic of the action of APOBEC3 deaminases, host enzymes with antiviral function. Assuming APOBEC3 editing is characteristic of human MPXV infection, we developed a dual-process phylogenetic molecular clock that-inferring a rate of ~6 APOBEC3 mutations per year-estimates that MPXV has been circulating in humans since 2016. These observations of sustained MPXV transmission present a fundamental shift to the perceived paradigm of MPXV epidemiology as a zoonosis and highlight the need for revising public health messaging around MPXV as well as outbreak management and control.


Assuntos
Desaminases APOBEC , Monkeypox virus , Mpox , Edição de RNA , Zoonoses Virais , Animais , Humanos , África Central/epidemiologia , África Ocidental/epidemiologia , Desaminases APOBEC/genética , Surtos de Doenças , Mpox/epidemiologia , Mpox/genética , Mpox/transmissão , Monkeypox virus/genética , Monkeypox virus/metabolismo , Mutação , Filogenia , Zoonoses Virais/genética , Zoonoses Virais/transmissão
11.
J Virol ; 97(11): e0149723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877719

RESUMO

IMPORTANCE: Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that replicates well in mosquito, bird, and mammalian cells. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in the serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and poses a threat to mammalian health. Thus, understanding the pathogenic mechanism of DTMUV is crucial for identifying potential antiviral targets. In this study, we discovered that NS3 can induce the mitochondria-mediated apoptotic pathway through the PERK/PKR pathway; it can also interact with voltage-dependent anion channel 2 to induce apoptosis. Our findings provide a theoretical basis for understanding the pathogenic mechanism of DTMUV infection and identifying potential antiviral targets and may also serve as a reference for exploring the pathogenesis of other flaviviruses.


Assuntos
Apoptose , Patos , Infecções por Flavivirus , Flavivirus , Especificidade de Hospedeiro , Animais , Humanos , Antivirais/farmacologia , Patos/virologia , eIF-2 Quinase/metabolismo , Flavivirus/enzimologia , Flavivirus/patogenicidade , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Mitocôndrias/metabolismo , Terapia de Alvo Molecular/tendências , Zoonoses Virais/diagnóstico , Zoonoses Virais/imunologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Canal de Ânion 2 Dependente de Voltagem/metabolismo
12.
J Virol ; 97(11): e0137023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877722

RESUMO

The H6 subtype of avian influenza virus (AIV) is a pervasive subtype that is ubiquitously found in both wild bird and poultry populations across the globe. Recent investigations have unveiled its capacity to infect mammals, thereby expanding its host range beyond that of other subtypes and potentially facilitating its global transmission. This heightened breadth also endows H6 AIVs with the potential to serve as a genetic reservoir for the emergence of highly pathogenic avian influenza strains through genetic reassortment and adaptive mutations. Furthermore, alterations in key amino acid loci within the H6 AIV genome foster the evolution of viral infection mechanisms, which may enable the virus to surmount interspecies barriers and infect mammals, including humans, thus posing a potential threat to human well-being. In this review, we summarize the origins, dissemination patterns, geographical distribution, cross-species transmission dynamics, and genetic attributes of H6 influenza viruses. This study holds implications for the timely detection and surveillance of H6 AIVs.


Assuntos
Aves , Especificidade de Hospedeiro , Vírus da Influenza A , Influenza Aviária , Mamíferos , Zoonoses Virais , Animais , Humanos , Aves/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mamíferos/virologia , Aves Domésticas/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
13.
J Virol ; 97(11): e0082923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882520

RESUMO

IMPORTANCE: Several coronaviruses (CoVs) have been detected in domesticated, farmed, and wild meso-carnivores, causing a wide range of diseases and infecting diverse species, highlighting their important but understudied role in the epidemiology of these viruses. Assessing the viral diversity hosted in wildlife species is essential to understand their significance in the cross-species transmission of CoVs. Our focus here was on CoV discovery in meso-carnivores in the Northeast United States as a potential "hotspot" area with high density of humans and urban wildlife. This study identifies novel alphacoronaviruses circulating in multiple free-ranging wild and domestic species in this area and explores their potential epidemiological importance based on regions of the Spike gene, which are relevant for virus-host interactions.


Assuntos
Alphacoronavirus , Carnívoros , Fezes , Saliva , Animais , Humanos , Alphacoronavirus/classificação , Alphacoronavirus/genética , Alphacoronavirus/isolamento & purificação , Animais Domésticos/virologia , Animais Selvagens/virologia , Carnívoros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Fezes/virologia , Interações entre Hospedeiro e Microrganismos , New England/epidemiologia , Saliva/virologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
15.
Viruses ; 15(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37631981

RESUMO

Diseases that are transmitted from vertebrate animals to humans are referred to as zoonotic diseases. Although microbial agents such as bacteria and parasites are linked to zoonotic events, viruses account for a high percentage of zoonotic diseases that have emerged. Worryingly, the 21st century has seen a drastic increase in the emergence and re-emergence of viral zoonotic disease. Even though humans and animals have coexisted for millennia, anthropogenic factors have severely increased interactions between the two populations, thereby increasing the risk of disease spill-over. While drivers such as climate shifts, land exploitation and wildlife trade can directly affect the (re-)emergence of viral zoonotic disease, globalisation, geopolitics and social perceptions can directly facilitate the spread of these (re-)emerging diseases. This opinion paper discusses the "intelligent" nature of viruses and their exploitation of the anthropogenic factors driving the (re-)emergence and spread of viral zoonotic disease in a modernised and connected world.


Assuntos
Zoonoses Virais , Zoonoses , Animais , Humanos , Zoonoses Virais/epidemiologia , Zoonoses/epidemiologia , Efeitos Antropogênicos , Clima , Comércio de Vida Silvestre
16.
Viruses ; 15(8)2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632063

RESUMO

The COVID-19 pandemic has not only strained healthcare systems in Africa but has also intensified the impact of emerging and re-emerging diseases. Specifically in Equatorial Guinea, mirroring the situation in other African countries, unique zoonotic outbreaks have occurred during this challenging period. One notable resurgence is Marburg virus disease (MVD), which has further burdened the already fragile healthcare system. The re-emergence of the Marburg virus amid the COVID-19 pandemic is believed to stem from a probable zoonotic spill-over, although the precise transmission routes remain uncertain. Given the gravity of the situation, addressing the existing challenges is paramount. Though the genome sequences from the current outbreak were not available for this study, we analyzed all the available whole genome sequences of this re-emerging pathogen to advocate for a shift towards active surveillance. This is essential to ensure the successful containment of any potential Marburg virus outbreak in Equatorial Guinea and the wider African context. This study, which presents an update on the phylodynamics and the genetic variability of MARV, further confirmed the existence of at least two distinct patterns of viral spread. One pattern demonstrates a slower but continuous and recurring virus circulation, while the other exhibits a faster yet limited and episodic spread. These results highlight the critical need to strengthen genomic surveillance in the region to effectively curb the pathogen's dissemination. Moreover, the study emphasizes the importance of prompt alert management, comprehensive case investigation and analysis, contact tracing, and active case searching. These steps are vital to support the healthcare system's response to this emerging health crisis. By implementing these strategies, we can better arm ourselves against the challenges posed by the resurgence of the Marburg virus and other infectious diseases.


Assuntos
Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , África/epidemiologia , População Negra , COVID-19/epidemiologia , Marburgvirus/genética , Pandemias , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/genética , Doença do Vírus de Marburg/virologia , Surtos de Doenças , Guiné Equatorial/epidemiologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/genética , Zoonoses Virais/virologia , Filogenia
17.
Braz J Biol ; 84: e270857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531478

RESUMO

Investigating the interplay of factors that result in a viral zoonotic outbreak is difficult, though it is increasingly important. As anthropogenic influences shift the delicate balance of ecosystems, new zoonoses emerge in humans. Sub-Saharan Africa is a notable hotspot for zoonotic disease due to abundant competent mammalian reservoir hosts. Furthermore, poverty, corruption, and an overreliance on natural resources play considerable roles in depleting biological resources, exacerbating the population's susceptibility. Unsurprisingly, viral zoonoses have emerged in Africa, including HIV/AIDS, Ebola, Avian influenza, Lassa fever, Zika, and Monkeypox. These diseases are among the principal causes of death in endemic areas. Though typically distinct in their manifestations, viral zoonoses are connected by underlying, definitive factors. This review summarises vital findings on viral zoonoses in Africa using nine notable case studies as a benchmark for future studies. We discuss the importance of ecological recuperation and protection as a central strategy to control zoonotic diseases. Emphasis was made on moderating key drivers of zoonotic diseases to forestall future pandemics. This is in conjunction with attempts to redirect efforts from reactive to pre-emptive through a multidisciplinary "one health" approach.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Humanos , Zoonoses Virais/epidemiologia , Ecossistema , Zoonoses/epidemiologia , África/epidemiologia , Pandemias , Infecção por Zika virus/epidemiologia , Mamíferos
18.
J Virol ; 97(9): e0079023, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37607058

RESUMO

Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.


Assuntos
Quirópteros , Camundongos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Camundongos/virologia , Quirópteros/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Camundongos Endogâmicos BALB C , COVID-19/mortalidade , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/mortalidade , Inoculações Seriadas , Antivirais/farmacologia , Antivirais/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/uso terapêutico , Zoonoses Virais/tratamento farmacológico , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/virologia , Envelhecimento , Avaliação Pré-Clínica de Medicamentos
19.
Artigo em Alemão | MEDLINE | ID: mdl-37261460

RESUMO

The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years.This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered.For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.


Assuntos
COVID-19 , Saúde Única , Viroses , Animais , Humanos , Zoonoses/microbiologia , Zoonoses Virais/epidemiologia , Pandemias , Alemanha , COVID-19/epidemiologia , Viroses/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA